A System Dynamics Analysis of Factors Affecting the Sustainability of Wheat Production System

(Document Type: Research Paper)

Alireza Amiri
Ph.D. student, Industrial Engineering, Yazd University, Yazd, Iran, alireza.amiri@stu.yazd.ac.ir

Yahia Zare Mehrjerdi*
Professor, Faculty of Industrial Engineering, Yazd University, Yazd, Iran, yzare@yazd.ac.ir

Ammar Jalalimanesh
Assistant Professor, Iranian Research Institute for Information Science and Technology (IranDoc), Tehran, Iran, jalalimanesh@irandoc.ac.ir

Ahmad Sadegheih
Professor, Faculty of Industrial Engineering, Yazd University, Yazd, Iran, sadegheih@yazd.ac.ir

Purpose: The problem of wheat production sustainability is an important issue that quarantines the availability of people's food at present as well as the nutrition of the next generations. Food is the essential human's need and has been used from human beings' creation until the end of its life. The existence of systems satisfying such requirements and the sustainability of them is always essential for the survival of the human race. Therefore, this study aims to investigate the sustainability of the wheat production system in Iran.

Design/methodology/approach: In this research, using the system dynamics approach, the sustainability of Iran's wheat production has been studied. The literature review section of this paper concentrates on several research papers in this context, considering the systems dynamics approach. In this study, an introduction has been expressed to the human's need for food and the position of wheat as the primary source of food in meeting this need in Iran. System dynamics is one of the most commonly used approaches for modeling and simulating environmental and socio-economic phenomena. The wheat production system covering environmental, economic, and social subsystems has been taken into consideration as a case to model the problem.

Key factors affecting wheat production have been collected based on a literature review. 50 years historical data for essential factors such as rain, wheat harvesting area, agricultural technology, fertilizers, population, wheat imports, and exports have been used in modeling and hence in the mathematical formulation of the problem.

Based on the history of these factors and related research, the dynamic hypothesis of the problem has been defined, and the causal diagrams of the relationships between critical factors and the wheat production have been developed. After modeling and formulation, the problem has been simulated.

* Corresponding author

Copyright © 2020, University of Isfahan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits others to download this work and share it with others as long as they credit it, but they cannot change it in any way or use it commercially.
and validated. Then, various scenarios have been proposed and simulated for the sustainability of the wheat production system, and the results have been addressed. The scenarios for changing the machinery level, reducing chemical fertilizer's use, increasing organic fertilizer use, and rainfall fluctuations have been simulated one by one, and their combinations have been simulated, respectively.

Findings: The simulation results indicated that the production of wheat is highly sensitive to precipitation and technology levels in the field. Therefore, it is better to focus more on such two factors and to have more concentration on them. Since water is the most crucial resource in wheat production, it would be better to concentrate the research and development efforts on water management technologies in the field. Due to the high sensitivity of wheat production to precipitation fluctuations and technology levels, more investment and better plans should be provided for the better and more efficient use of the two sources.

Research limitations/implications: While numerous factors such as pesticides, seeds, planting and harvesting, irrigation methods, management, human resources, and related requirements affect wheat production, due to the large scale of this research, only the most critical factors were selected for the study. Examining the behavior of each of the above-mentioned factors will result in a better awareness of the existing reality and better planning for wheat production.

Practical implications: The wheat production system includes environmental, economic, and social subsystems as well as numerous and complex relationships between the human and the environment. The systemic nature of such interdependencies and interactions needs systematic approaches and integrated assessment tools. Identifying and modeling correctly the intrinsic characteristics of the wheat production system assure preserves or increases its essential results over the time and help governmental organizations and institutes to move towards sustainable development and to set policies that encourage positive changes.

Social implications: Since the proposed model is expected to help the government and agricultural institutions in planning wheat production efficiently, it will make the country move towards self-sufficiency in wheat production, which in turn results in psychological and social security in terms of food and increases social sustainability.

Originality/value: To the best knowledge of the authors, there is no comprehensive investigation on the sustainability of wheat production in Iran. The literature review indicates that the agricultural context is almost limited to a particular zone and this problem has not been addressed on the national scale. Thus, this is the first research that examines such a problem.

Keywords: Food system, System sustainability, Simulation, System dynamics, Wheat production.
پویایی-شناسی عوامل مؤثر بر پایداری سیستم تولید گندم

علیرضا امیری، یحیی زارع مهرجردی، عمار جلالی منش، احمد صادقی

چکیده: مسئله پایداری سیستم تولید گندم برای تغذیه نسل کنونی از منابع موجود، به صورتی که تغذیه نسل‌های بعد به خطر نپیوند، یکی از مسائل مهم عصر حاضر است. در این پژوهش عوامل مؤثر بر سیستم تولید گندم در ایران و پایداری آن با استفاده از روش‌های انجام شده در طول سال‌ها بررسی شد. نمودارهای مربوط به نهایی حلقه ارتباط بین عوامل تولید گندم، با توجه به سلسله رفتار آنها و پیوستگی آنها، تصویر و تجزیه و تحلیل شده است. سپس با ترسیم نمودار جریان، مسئله شیب‌سازی شد و بعد از اختصاصیت و سارویهای مختلف، از جمله آغاز، استفاده از کودهای ارگانیک و کاهش استفاده از کودهای معادنی برای افزایش کیفیت ناحیه و افزایش سطح تکنولوژی کشاورزی و نوسان‌های حجم بهبود سالانه برای مشاهده تأثیر آنها در پایداری سیستم تولید گندم، شیب‌سازی و بحران و برسی شد. بنابراین به حساسیت زیاد تولید گندم به نوسان‌های بارشی و سطح تکنولوژی افزایش برماندی و سرمایه‌گذاری برای استفاده بهتر و مؤثرتر از این دو منبع توصیه می‌شود.

واژه‌های کلیدی: پایداری سیستم، پویایی-شناسی سیستم، تولید گندم، سیستم غذا، شیب‌سازی
یکی از نیازهای مهم و حیاتی انسان، تغذیه و رژیم غذایی و به وجود آمدن روزمره‌ای به‌وجود آوردن مولکول‌های نیازمند آن‌ها، انسان را همراه می‌کند. رشد، طول عمر، ناسازی، آرامش، انرژی و روند خلق و نگهداری و درد را تحقیق و تحقیق و برداشت، تحقیق نسل و تولید مثل، همگی به‌عنوان و امکان تضعیف سالم است (آقوندی، ۲۰۰۸). با تغییرات به‌وجود آمدن مشخصاتی که به‌وجود آمده در طول تاریخ در مکان‌های مناسب از این ناحیه آب، خاک و کشاورزی، منابع بین‌النهرین، ایران و مصر اساس بناهایی را و رفع نیازهای غذایی از مهم‌ترین اولویت آنها در انتخاب محل زندگی بوده است. علاوه بر این، در جنگ‌های گوناگون از این ناحیه یک حربه در مقابل دشمن استفاده می‌شده است. تحقیق غذایی طرف مخالف و جلوگیری ویروس‌های غذایی به منطقه مورد تهیه در برخی از جنگ‌ها رونقی محصول بوده است (مجیدی، ۲۰۱۳). قانون اساسی جمهوری اسلامی ایران در اصل سوم، بند آخر و همچنین در اصل جهت وسوم، بند آخر و بند نهم بر اساسات تولید کشاورزی، که نیازهای غذایی را تأمین کند، کشور را به مرحله خودکفایی بررسی و آماده و از واپس‌گشت براین، تأکید دارد. همچنین براساس هرم سلامه‌مات نیازهای غذایی ایران‌های برادران هارولد مارلین، وانتشاس آمریکایی، نیازهای زیستی در اوج سلامت‌سازی قرار دارد و تا زمانی که ارسا شود، بیشتر تأثیر را بر رفتار فرد دارد (رضايانی، ۲۰۰۲).

کنند، یکی از مصوبات اساسی کشاورزی است که جایگاه خاصی در کنار نگهداری مردم ایران دارد و تأثیر آن به عنوان ایجاد مناسب غذایی است و رهای اجتماعی افزایش می‌تواند کشاورزان، کشور را به مرحله خودکفایی بررسی و آماده و از واپس‌گشت براین، تأکید دارد. همچنین براساس هرم سلامه‌مات نیازهای غذایی ایران‌های برادران هارولد مارلین، وانتشاس آمریکایی، نیازهای زیستی در اوج سلامت‌سازی قرار دارد و تا زمانی که ارسا شود، بیشتر تأثیر را بر رفتار فرد دارد (رضايانی، ۲۰۰۲).

تعریف گذاری و اساسی پایداری در گزارش برگزاری ۱ به این صورت می‌شود: با این صورت قابلیت بهبود می‌یابد (الگوی، ۲۰۰۸). بی‌ITALIC گذاری و اساسی پایداری در گزارش شناخته شده است: "تولید و اansasی کشاورزی". نیازهای نسل امروز به خطر اندکی از انسان‌ها نسل‌های آینده برای رفع نیازهای خود را با بهبود و افزایش اقتصادی، کشاورزان از دیدگاه کسب و کار به‌صورت دوبل تعریف می‌شود: بهبود مداوم و متعادل عملکرد اجتماعی، زیست محیطی و اقتصادی در سراسر جهان از این ناحیه می‌آمیزی "سیستم غذایی پایدار" با این نوع تعریف می‌کند: "قرار دادن مواد غذایی سالم برای رفع نیاز نسل کنونی، با حفظ سلامت و اکوسیستم‌ها" که همچنان نیاز غذایی نسل بعدی را با حداکثر ممکن بر مبنای رفاه می‌کنند (مرادی، ۲۰۰۷).

توجه: شکل شماره ۱ نشان دهنده اهداف پایداری سیستم کشاورزی و زیست‌محیطی آن است. شاخص‌های پایداری برای سنجش یک یا مهم‌ترین اهداف این ابعاد به‌کار گرفته می‌شود. شاخص‌های متنوع و غوناگونی در پژوهش‌های علمی معرفی و استفاده شده است. در سه دهه اخیر، چندین نقشه منشی شده که شاخص‌های استفاده‌شده در کشاورزی را بررسی و معرفی کرده است (براگاکی، ۲۰۱۵؛ روز، و ایرانی، ۲۰۱۸). در این مقاله برای بررسی پایداری سیستم ولایت گندم در هر بعد از یک شاخص استفاده شده است. شاخص خودکفایی در بعد اجتماعی، شاخص حجم تولید گندم در بعد اقتصادی و شاخص کیفیت خاک در بعد زیست‌محیطی استفاده شده است.
پویاپیمانه‌شناسی عوامل مؤثر بر پایداری سیستم تولید گندم: علیرضا امیری و همکاران

شکل 1- ابعاد پایداری و شخصیت‌های مرتب (براگا، 2015)

مسئله پایداری، مسئله چگونگی فراهم کردن اسباب تغذیه نسل‌های عالی از منابع موجود به صورتی است که تغذیه نسل‌های بعدی به خطر نیفتند؛ به عبارت دیگر، با مایه‌های موجود، به‌کمک برنامه‌ریزی کنیم که نسل‌های بعدی را تغذیه کنیم و سبب کنیم نسل‌های بعدی را محروم نکنیم. با توجه به تغذیه‌ای قابلیت یابی‌پذیر، نیازهای ایران و کمبود تولیدات آزمایش و روزکرده در این زمینه نماهنگ‌شده در زمینه پایداری سیستم‌ها به‌خصوص سیستم مواد غذایی و ضرورت تولید غذا برای نسل‌های عالی از آینده از تغذیه نسل‌های عالی از منابع موجود به‌کمک برنامه‌ریزی کنیم که نسل‌های بعدی را تغذیه کنیم و سبب کنیم نسل‌های بعدی را محروم نکنیم. به عبارت دیگر، با مایه‌های موجود، به‌کمک برنامه‌ریزی کنیم که نسل‌های بعدی را تغذیه کنیم و سبب کنیم نسل‌های بعدی را محروم نکنیم. به عبارت دیگر، با مایه‌های موجود، به‌کمک برنامه‌ریزی کنیم که نسل‌های بعدی را تغذیه کنیم و سبب کنیم نسل‌های بعدی را محروم نکنیم.

براساس پایگاه‌های مطلوب، تاکنون پژوهشی که این مسئله را بررسی کند نمی‌باشد. پژوهش‌های انجام شده در حوزه کشاورزی، به‌طور عمده به ناحیه خاصی از کشور و در سطح استان و شهرستان‌های محصور و مسئله پایداری تولید گندم در سطح ملی بررسی نشده است؛ بنابراین، این پژوهش در نوع خود، اولین پژوهشی است که این مسئله را واکاوی می‌کند.

در سه‌قسمت ۲ و روش‌شناسی پژوهش، فرضیه پژوهش و طراحی حلقوه‌های علمی در قسمت ۳ بیان شده است. در قسمت ۴ به صحنه‌گذاری متن‌یابی، مدل‌سازی جریان، شبیه‌سازی و اعتبارسنجی مدل و تحلیل حساسیت و سیاست‌هایی درباره کنیت‌کننده سیستم تولید غذا توجه شده و بحث و بررسی نهایی در قسمت ۵ و نتیجه‌گیری در قسمت ۶ خلاصه شده است.
مباحث نظری موضوع
آن و پروسیری (2016) مسئله پایداری و امنیت غذایی را در سه کشور اسپانیا، فرانسه و ایتالیا با رویکرد شناسی سیستم به‌طور کامل و بررسی کردن. آنها جوامع می‌دارند که به‌عنوان تغییرات زیست محیطی، اجتماعی و اقتصادی و موج‌های تغییر در انعطاف‌پذیری پیاده‌ریزی و امنیت سیستم غذایی می‌تواند به‌طور مفصل بررسی‌شود و تجزیه و تحلیل کردند. باستی و همکاران (2018) مسئله پایداری سیستم‌ها کشاورزی را با انتخاب محصول گل‌های زیبایی در شرایط دماوند بحث و بررسی کردن. آنان در پژوهش خود، مدیریت پایدار منابع آب و جلگیری از تغییر کاربری زیست‌های کشاورزی را به‌عنوان دو عامل مهم بر پایداری سیستم کشاورزی بررسی‌کردند.

تاکی و همکاران (2018) تأثیرات زیست محیطی افرادی برای تولید گندم در مرکز ایران را از روش تجزیه و تحلیل چرخه طول عمر بررسی کرده و به‌ین تجربه، رئیساند که گندم دم، تغییرات حاکمیت در هفت کلنگ شدن در است و مصرف سوخت در تولید گندم، بخش‌هایی از تولید که رابط و همکاران (2017) تأثیر تغییرات بارش و نوع کشت محصول را بر پایداری سیستم تولید گندم در مزارع بدون شحم در آفریقا جنوبی بررسی کردن. آنان به‌ین تجربه رئیساند که چرخش کشت محصول نسبت به کشت گندم محلی در یک زمین برتری خاصی ندارد و بلکه تک گندم‌محصولی هنگام استفاده قاسمی و همکاران (2018) پایداری زیست محیطی و اقتصادی تولید گندم در غرب ایران را با استفاده از تجزیه و تحلیل چرخه زندگی بررسی کرده. آنان به‌ین تجربه رئیساند که کاهش سوخت‌های فسیلی و گرم‌شنیده کره زمین از آثار زیست محیطی تولید گندم است که به‌طور مشابه، ناشی از جریان الکتریکی و کود نیتروژن استفاده‌شده در کشت گندم است. فیلدیستونی و همکاران (2018) دسترسی پایدار به محصولات در اندونزی را با استفاده از روشهای شناسی سیستم شبه‌سازی کردن. مدل آنها شامل عوامل اقتصادی، زیست محیطی و اجتماعی و ارتباطات بین این عوامل است. همچنین همکاران (2018) با استفاده از تجزیه و تحلیل اطرافی، پایداری زیست محیطی تولید گندم و درآمدهای آن در آسیا و همکاران که به‌ین تجربه رئیساند که تولید گندم در مناطق، پایداری بیشتری نسبت به تولید ذرت دارد و تولید ذرت در مقایسه با تولید گندم، به‌ین میزان بیشتری محسوساً در کمتره ظرفیت فرآیند و مصرف آب نیازمند است. یکینگ و همکاران (2017) در مقاله خود، مدیریت نیتروژن را برای تولید پایدار گندم بررسی کردن و به‌ین تجربه رئیساند که مدیریت پایدار نیتروژن در تولید گندم بیهور محصول، سودآوری شخصی، حفاظت از محیط زیست و سلامتی انسان، اهمیت بیشتری دارد. مسگری و همکاران (2017) با استفاده از روشهای شناسی سیستم محلی را برای سیستم کشاورزی ملی ایران توصیه داشتند و در این مدل، به اصل تفاوت در وضعیت و نظارت بر سیستم را تجزیه و تحلیل کرده و با ارائه مدل‌های کودشودن مدل ارائه‌شده را به‌یاد هم کردند. اوری و همکاران (2016) در پژوهش خود، مدل پایایی شناسی سیستم‌ها را برای انتخاب غذایی پایدار کشاورزی در صحرای‌های جنوب آفریقا ارائه کردن و در این، عوامل تغییرات و مطالعات کردن که به‌ین تاریخ تغییرات بیشتری و استرس‌های موجب موثری کشاورزی شده بود. آنان این پیشرفت را بررسی کردن که چگونه می‌توان جوامع تولید‌کننده به‌یاد باشد حمایت عمومی با پیشرفت خارجی می‌توان به‌ین بخشید. رابط و همکاران (2015) برای ساختار مشابهی کردن تولید گندم آبی در استان فارس برپایه روشهای شناسی سیستم محلی را طراحی کردن. والشر و همکاران (2016) با مدل‌سازی
روش‌شناسی پژوهش

3-1 رویکرد پیوسته‌شناسی سیستم

سیستم مواد غذایی، متشکل از چند زیرسیستم زیست‌محیطی، اجتماعی و اقتصادی است که در گردهمد
تعامل‌های متعدد و یپیده‌ای بین انسان و محیط زیست است. ماهیت سیستم‌های این وابستگی و تعاونی
رویکرد‌های نظام‌پژوهشی و ارزیابی‌های بررسی‌های یکپارچه است. شناسایی و مدلهای ویژگی‌های ذاتی سیستم
غذایی به صورتی که اطمنان حاصل شود نتایج ضروری خود را در طول زمان و در کنار نسل‌ها حفظ می‌کند و با افزایش
می‌دهد، به سازمان‌ها و نهادهای دولتی کمک می‌کند که به‌طور پیش‌بینی‌کننده کرد. سیستم‌هایی که پیش‌بینی
کنند که مشوی تحول‌های مثبت باشد. سیستم‌های اجتماعی و زیست‌محیطی را به‌صورت سیستم‌های پیچیده‌ای
یکپارچه طبیعت می‌توان تعیین کرد که با فرآیندهای پیوسته سازگاری بازخورد متقابل به یکدیگر متقابل است و تبادلات
مهم ارزش و ماده در سر-exec مرزهای تعیین شده آنها وجود دارد (فولکه، 2006؛ به همین علت، برای تحلیل
پایداری سیستم غذایی با توجه به تعاملات پیچیده‌ترین سیستم‌های موجود در آن، یکی از روش‌های کارا، روش
پیوسته‌شناسی سیستم است، در سال‌های اخیر، مطالعات گوناگون در سیستم‌های پیچیده با استفاده از روش
پیوسته‌شناسی سیستم انجام شده است (حاج حیدری و رحمتی، 2018، میرغفوردو و همکاران، 2016). روشن
پیوسته‌شناسی سیستم با فراهم کردن چارچوب مدل‌سازی علیه روابط خطی و غیرخطی را طراحی، رفتار درون‌زای
نمایش داده تحلیل بررسی و مراحل مربوط به اتخاذ سیاست‌ها و تصصیم‌گیری در مسائل مدیریتی را برآورد
می‌کند. این روش شناسی با انجام‌دادن شیوه‌سازی و تحلیل رفتار سیستم با استفاده از فرضیه‌های مختلف، بازخوری
برای سیاست‌گذاران در زمینه تأثیر سیاست‌ها فراهم می‌کند تا آنها به شکل کارا و اثربخش سیاست‌گذاری کند.
فرایند تحلیل سیستم در این روش از پنج گام تشکیل شده است: 1- تشریح مسئله؛ 2- طراحی فرضیه پویا؛ 3- شناسایی متغیرها، توسعه مدل پویا و شبیه‌سازی؛ 4- صحت گذاری متغیرها و اعتبارسنجی مدل پویا؛ و 5- طراحی و ارزیابی سیاست (آذر و میرمهدی، 2012، استرمن، 2000).

فرمول‌بندی فرضیه پویا و طراحی حلقه‌های علی‌همانگونه که پیشتر تا بان شده، برای حل مسئله به روش پویای شناسی سیستم، به فرضیه پویا نیاز است. این فرضیه با این عملت پویایی که با باید ماهیت پویای مسئله را در قالب حلقه‌های بازخورده توصیف کند. مدل ساز در فرضیه پویا، دلایل خود برای توجه رفتار مسئله مبتنی را به شکل فرضیه بیان می‌کند.

تولید گندم، مسئله‌ای پیچیده و چندوجهی است و از عوامل مختلفی تأثیر می‌گیرد. در مسئله تولید گندم به شکل پایدار، عوامل مختلفی ازجمله شرایط آب و هوایی و بارندگی، سطح دانش کشاورزان، کیفیت خاک، سطح تکنولوژی استفاده‌شده‌باید تولید گندم، میزان مصرف، سطح زیر کشت، میزان و نوع کود استفاده‌شده (شیمیایی یا طبیعی)، سمی‌پاشی، معادن آلی زیرزمینی، هویه‌های تولید، قیمت گندم و حاشیه‌های تولید گندم و کیفیت و نوع بذر، اثرگذاری است (هوشنگیار و همکاران، 2018؛ مهندسین و همکاران، 2012؛ بابکیری و همکاران، 2017): بنابراین، در این پژوهش، فرضیه پویا با دارایی گرفتن عوامل بین گیاه با استفاده از حلقه‌های علی توزعه یافت.

با توجه به فرضیه پویا، از نگاه تحلیل گر، برخی از عوامل، کنترل‌پذیر نیست (برونزا) و برخی از آنها در کنترل کشاورز با سیاست‌گذاری است؛ به‌عنوان مثال، میزان بارش، متغیری کنترل‌پذیر است و در فرضیه پویای وابسته‌ی به‌نام تأثیر می‌گذارد. در مقیاس، تکنولوژی، عاملی است که با مدریت درست منابع طبیعی و استفاده از برنامه‌های مناسب کاهش یابد و تشابه، می‌توان آن را ارتفا با خشید. شکل شماره 2، بندآگه‌ای فرضیه پویای این پژوهش را نشان می‌دهد. در این فرضیه، حلقه مربوط به استفاده از دانش و تکنولوژی، حلقاتی مبتنی است و نشان می‌دهد سرمایه‌گذاری بیشتر در زمینه‌های افزایش سطح تکنولوژی و دانش جامعه کشاورزی تولید بیشتری را به دنبال خواهد داشت. همچنین، حلقه‌های مربوط به استفاده از منابع طبیعی برای تولید گندم، همگی تعادلی است. این حلقه‌ها هدف‌گراست و در درازمدت، موجب توانایی و ایجاد ثبات را در سیستم می‌شود. تأثیر هر یک از متغیرهای تکنولوژی، دانش کشاورزی، معادن آلی، کیفیت خاک بر افزایش تولید و ذخیره‌گذاری گندم و در نهایت، بر پایداری سیستم تولید گندم در این پژوهش بررسی شده است.
جدول 1 - مقایسه برخی مطالعات انجام شده در زمینه پایداری سیستم کشاورزی

<table>
<thead>
<tr>
<th>شاخص‌ها</th>
<th>هدف پژوهش</th>
<th>روش پژوهش</th>
<th>مؤلفان</th>
</tr>
</thead>
<tbody>
<tr>
<td>پژوهش‌های تجدیدپذیر و تجدیدپذیر.</td>
<td>بررسی پایداری سیستم‌های گندم و ذرت با استفاده از آنالیز ایمرژی</td>
<td>تجزیه و تحلیل</td>
<td>هوهیار و همکاران (2018)</td>
</tr>
<tr>
<td></td>
<td>بررسی تأثیر مراحل درآمد و کاهش غلظت</td>
<td>تجزیه و تحلیل</td>
<td>نیاز و همکاران (2019)</td>
</tr>
<tr>
<td>ضریب شاخص کردن</td>
<td>پژوهش</td>
<td>تجزیه و تحلیل</td>
<td>راخص و همکاران (2015)</td>
</tr>
<tr>
<td>انتشار گزارش‌های کلخانه‌ای</td>
<td>بررسی پایداری کشت گندم در حیاط</td>
<td>تجزیه و تحلیل</td>
<td>قانونی و همکاران (2020)</td>
</tr>
<tr>
<td>بهره‌وری</td>
<td>انتشار گزارش‌های کلخانه‌ای</td>
<td>تجزیه و تحلیل</td>
<td>نیاز و همکاران (2018)</td>
</tr>
<tr>
<td>مدیریت مصرف معیارهای بیماری</td>
<td>بررسی پایداری کشت گندم و ذرت</td>
<td>تجزیه و تحلیل</td>
<td>بینمک و همکاران (2017)</td>
</tr>
<tr>
<td>تخلیه مالی، کیفیت محصول و تولید گندم</td>
<td>تخصص بهینه زمین‌های زیر کشت به محصولات ارزیابی بررسی</td>
<td>بهنام‌سازی</td>
<td>کلان‌مارین و همکاران (2017)</td>
</tr>
<tr>
<td>کیفیت انجامیده، بررسی پایداری سیستم‌های گندم،</td>
<td>بررسی تأثیر استراتژی، بهره‌وری و کشاورزی بر پایداری کشت</td>
<td>تجزیه و تحلیل</td>
<td>والدر و همکاران (2016)</td>
</tr>
<tr>
<td>با هدف کاهش آثار زیست‌محیطی</td>
<td>ارزیابی بررسی پایداری سیستم‌های گندم</td>
<td>تجزیه و تحلیل</td>
<td>ایوب و همکاران (2016)</td>
</tr>
<tr>
<td>طراحی سیستم‌های نیترات و همکاران (2010)</td>
<td>ارزیابی بررسی سیستم‌های گندم های در انگلیسی</td>
<td>تجزیه و تحلیل</td>
<td>فینیئین‌و همکاران (2010)</td>
</tr>
<tr>
<td>ارزیابی نحوه کشت محصول با پایداری کشاورزی</td>
<td>ارزیابی بررسی سیستم‌های گندم در زمین‌های بروین</td>
<td>تجزیه و تحلیل</td>
<td>کرکس و همکاران (2016)</td>
</tr>
<tr>
<td>کیفیت حاکم</td>
<td>ارزیابی بررسی سیستم‌های گندم</td>
<td>تجزیه و تحلیل</td>
<td>سپورت و همکاران (2017)</td>
</tr>
<tr>
<td>طراحی سیستم‌های نیترات و همکاران (2010)</td>
<td>ارزیابی بررسی سیستم‌های گندم</td>
<td>تجزیه و تحلیل</td>
<td>پژوهش حاضر</td>
</tr>
</tbody>
</table>
تولید و مرمت، دوره 11، شماره 2، پیاده 21، تابستان 1391

شکل 1- فرضیه پیامدهایی

شکل شماره 3 نمودار علی-حلقوی مسئله را نمایش می‌دهد. هنگامی که نسبت و سطح زیر کشت را به تولید گندم نشان می‌دهد، تولید و مصرف گندم نیز همچون هرفراویده دیگری از قانون عرضه و تقاضا تبعیت می‌کند. هرهچین مرز عرضه گندم افزایش یافته، کیفیت آن کاهش می‌یابد و هرهچین برای تقاضای موجود، کمبود گندم وجود داشته باشد، کیفیت آن در بازار افزایش می‌یابد. در این میان، دولت با خرید گندم در این معادله، اختلاف ایجاد می‌کند و باعث ایجاد تعادل جدیدی می‌شود. این مداخله اجازه نمی‌دهد کیفیت گندم افزایش یابد و همچنین سطح زیر کشت گندم کاهش یابد. کاهش زیادی داشته باشد (علی پور و همکاران، 1391). شاید بتوان گفت با توجه به استراتژی‌های جدید کشاورزی، تولید و مرمتی، اثر منابع آب و تکنولوژی آبیاری را به تولید گندم نشان می‌دهد. به‌طور طبیعی، آن مصرف زیر کشت گندم، موجب افزایش سطح زیر کشت گندم، کیفیت آبیاری، همچون آبیاری بارانی، موجب کاهش مصرف آب و فضاهای پاکیزه، تولید می‌شود (پور و گنجی، 1391).

حلقه‌های تعادل B و B7، اثرات منابع آب، باران و مصرفی آبیاری را به تولید گندم نشان می‌دهد. به‌طور طبیعی، افزایش سطح زیر کشت گندم، موجب افزایش مصرف آب و کاهش منابع آب می‌شود. در مقایسه، استفاده از تکنولوژی‌های نوین آبیاری، موجب کاهش مصرف آب و افزایش پاکیزه تولید می‌شود (پور و گنجی، 1391).

حلقه‌های تعادل B و افزایش R1 اثر کیفیت خاک را به تولید گندم نشان می‌دهد. استفاده از کودهای شیمیایی در کشاورزی، بازده تولید را افزایش می‌دهد و انتقال حیاتی از این نوع کود در بلندمدت، موجب کاهش کیفیت خاک و در نتیجه، کاهش تولید می‌شود (جلویی و همکاران، 1391). علاوه بر این، استفاده از کودهای شیمیایی موجب تخریب مکانیکی زیست و آب‌های زیرزمینی، نیز می‌شود (نیکی‌خواه و همکاران، 1391). کودهای طبیعی در مقایسه، در بهترین شرایط کودهای شیمیایی را برای افزایش بازده تولید ندادند و اثر آنها را تأثیر بیشتری نسبت به کودهای شیمیایی داشت اما این نوع کود، اثر مخرب بر کیفیت خاک و محیط زیست ندارد و در طولانی مدت نیز بازده را افزایش می‌دهد (اسماعیل و همکاران، 1391).
پیوسته نشان‌گر مؤثر بر پایداری سیستم تولید گندم/ علیرضا امیری و همکاران

حلقه‌های افزایشی ۲ تا ۲۳ ر از آموزش و دانش کشاورزان، تضمین گیری بهره‌وری او افزايش بهره‌وری تولید می‌سوزد. علاوه بر این، آموزش، سواد کشاورزان را برای استفاده از تکنولوژی‌های نوین ارتقای می‌دهد و در این اساس نیز تولید گندم افزایش می‌یابد (افتخاری و میردامادی، ۲۰۱۶). نکته دیگری که در این پویایی وجود دارد، حس کشاورزان به اثربخش بودن آموزش و آهموزش بها توجه به افزايش تولید و افزايش انگیزه در آنها برای آموزش است.

۲- مطالعه کاربردی و یافته‌ها

۴- صحه‌گذاری متغیرهای مدل پویا

۴۰- بارش: برای شبیه‌سازی و اجرای مدل از داده‌های تولید گندم در ایران استفاده شد. داده‌های بارش سالانه از سایت بانک جهانی (سایت بانک جهانی، ۲۰۱۹)، داده‌های تولید گندم سالانه و نهادهای آن از سایت نیرو (فائو، ۲۰۱۹) و گزارش‌های منابع مایکرو نهادهای ایران (سایت جهاد کشاورزی، ۲۰۱۹) و همچنین میزان مصرف سالانه، از سایت بانک جهانی (سایت بانک جهانی، ۲۰۱۹) اخذ شد. شکل شماره ۱ نشان دهنده میزان تولید گندم سالانه و سایر نهاده‌های تولید گندم ایران است. این نمودار نمایش می‌دهد حجم بارش سالانه ایران در بیشتر موارد بین ۳۰۰ تا ۷۰۰ میلی‌متر است. شیب منفی خط رگرسیون تخمین‌دهنده نشان می‌دهد در این سال‌ها متوسط میزان بارش، سیر تناوبی داشته است. مشاهده می‌شود که هم‌زمان با نرخ منفی بارش سالانه، تولید گندم افزایش یافته است و این موضوع، نشان دهنده استفاده از طرف‌های سایر نهاده‌های تولید گندم، هم‌زمان ماهه‌ای آت هشدارورژی و کرود یا می‌تواند سال‌هایهایی که بارش سالانه با افت شدید مواجه بوده است، تولید گندم نیز به‌تبع آن کاهش یافته است.
سطح زیر کشت: نمودار موجود در شکل شماره 3 نشان می‌دهد با افزایش سطح زیر کشت، تولید گندم نیز افزایش یافته است؛ ولی نرخ افزایش تولید گندم، بیشتر از نرخ افزایش سطح زیر کشت است. سطح زیر کشت در سال 1340 معادل 644000 هکتار بوده است که به سال 1347 افزایش یافته است؛ اما تولید گندم در سال 1340 معادل 664000 تن بوده که به سال 1357 معادل 835000 تن در حال افزایش یافته است. به عبارت دیگر، عملکرد گندم در طول زمان نیز افزایش داشته است. عموماً گندم از میان در سال 1397 افزایش یافته است. این افزایش در عملکرد گندم ناشی از تأثیر سایر نهاده‌های مؤثر در تولید گندم، همانند استفاده از کودهای افزایشی.

شکل 3- حجم تولید سالیانه گندم و سایر نهاده‌های تولید گندم

معاون آلایندگانی: همان‌گونه که در شکل شماره 4 مشاهده می‌شود، تولید گندم سالیانه، همگام با افزایش تعداد تراکتور افزایش می‌یابد. این نمودار اافیون اینکه افزایش تولید گندم را با استفاده از میان آلات کشاورزی به طور ملی بهبود می‌یابد. در سال‌های مانند سال‌های 1370 و 1379 و 1387 تولید، افزایش بیشتر داشته است که باید علت آن بررسی شود. ظاهراً همان‌گونه که نمودارها نشان می‌دهد، افزایش تولید گندم در سال‌های مانند تعداد میان آلاینده‌های افزایشی در ارتباطی ندارد.

کودهای کشاورزی: بدون شک، استفاده از کود موجب افزایش تولید محصولات کشاورزی می‌شود؛ اما مصرف آن باید براساس استانداردهای جهانی باشد؛ در غیر این صورت، افزایش مصرف، موجب ایجاد ناهنجاری‌های در محیط زیست و زمین‌های کشت‌پذیر می‌شود. شکل شماره 4، میزان استفاده از کودهای شیمیایی و میزان تولید گندم در ایران را در سال‌های 1339 تا 1379 نشان می‌دهد.
شکل شماره ۵: مدل جریان مسئله تولید گندم را نشان می‌دهد. مفروضات و بخش‌های مختلف مدل حالت‌‌گیری جریان مسئله به شرح ذیل است:

۲-۴ مفروضات مدل: مفروضات مدل به شرح ذیل است: ۱- سطح ذخیره‌ای اطمنیان به اندازه حجم مصرف سه ماه در نظر گرفته شده است؛ ۲- سطح ذخیره‌ای مطلوب برای اقدام به صادرات به اندازه مصرف پک‌سال است؛ ۳- در صورت نیاز به واردات، ۸۰ تا ۹۰ درصد حجم لازم وارد می‌شود؛ ۴- در صورت اقتصاد به صادرات، ۲۰ درصد حجم سفارش در خویش‌تان صادر می‌شود (نهایی‌ترین، تاکنون صادرات زیادی نداشتیم، به دلیل حجم صادرات اندکی در نظر گرفته شده)؛ ۵- مقدار میانگین حجم سفارش در سه شرط اگرگانیک به‌طور تصادفی ۱۵ تا ۳۰ در هکتار در نظر گرفته شده است و ۶- به‌طور کلی، پژوهش خطی و برای با ۰/۷ درصد در نظر گرفته شده است.

۲-۴ کیفیت خاک: کیفیت خاک از همان مهم در پایداری زیست محیطی و کشاورزی، ارزیابی و حفظ کیفیت خاک است. برای ارزیابی کیفیت خاک از شاخص‌های فیزیکی، شیمیایی و پیلولوزی استفاده می‌شود. از آنجا که بررسی نمایه‌های خاک در پروژه‌ها و طاقت‌های نسبتی و ضد داخلی تعدادی از آشکارگر شده، بزرگی خاک است. به‌عنوان مجموعهٔ حمل‌ونقل‌هایی که در این مدل دارا هستند. ارزیابی و محاسبهٔ کیفیت خاک در این مدل به کار رفته است. ارزیابی کیفیت خاک از میزان سطح حرارتی خاک در این مدل بیش از کارگر کیفیت خاک است، بزرگتر از پژوهش محقق و همکارانی است (محقق و نادری، ۲۰۱۶). آنها از ۴۹ ویژگی فیزیکی و شیمیایی خاک می‌گفتند و به‌کار رفته است. درصد مصرف سالیانه‌ای برابر در آب ۱/۴ را به‌عنوان مجموعه حداکثری داده برای ارزیابی کیفیت خاک انتخاب کردند. میزان تأثیر کودهای شیمیایی و ارگانیک بر ویژگی های مختلف، رشد کیل و رشد در سایه‌های این نامه کارشناسی ارشد ملی، رشد گیاه‌ها و ویژگی‌های خاک نیز وابستگی داشتند. با توجه به اینکه درصد خاک‌های یاد می‌گردد در آب از پایه‌های داستان کارشناسی ارشد برای تحقیق در این مدل است، این روش به میزان ۷۹ درصد به‌عنوان رویکردهای ارگانیک به‌کار رفته‌است.

۲-۴ تکنولوژی: پیک از عوامل مؤثر بر رشد سطح زیر کشت و حجم تولید گندم، استفاده از تکنولوژی در کشاورزی است. در این مدل، تکنولوژی به‌عنوان یک متغیر سطح در نظر گرفته شده است به‌کار آمده است. براساس پژوهش‌های انجام‌شده، عمر میانگین میانگین آپسیت کشاورزی، حداقل ۱۳سال است (مرداد و همکاران، ۲۰۱۴). براساس عمر میانگین ۱۳ساله، فرض است که تجربیات خردپویی شده، طی ۱۲ سال کاملاً فرسوده می‌شود و تخریب فرسودگی سالیانه، مطلوب به میزان یکسال برای بیمار بالا مقدار ۵/۷ درصد تعیین شده است. تخریب خردپویی نیز براساس درصد افزایش سالیانه تجربیات کشاورزی نسبت به سال قبل محاسبه شده است. میانگین ضوابع بررسی‌های مخصص‌بندی با کمباین‌هایی از سه درصد تا پانزده درصد محاسبه شده است که عمر کمباین، چنگوئی و نگهداری آن، آموزش‌های راهندازی
آن و کشاورز و ... بر این ضایعات مؤثر است (امیرنژاد و همکاران، 2009). صبوری و همکاران در پژوهش خود به این نتیجه رسیدند که 42 درصد تغییرات متغیر انتخاب کود می‌باشند و 18 درصد تغییرات متغیر کاهش ضایعات گندم براز مشابهی و ترویجی در طرح محوری گندم در سال‌های 2002-2008 بوده است. (صبوری و همکاران، 2008). قربانی در پژوهش "عوامل مؤثر بر سرما گذاری کشاورزان استان خراسان رضوی در ماه‌های کشاورزی" (کاربرد روش دو مرحله‌ای هکمن) به این نتیجه رسید که با افزایش یک واحد به متوسط تحصیلات بزرگ‌بودار و با ثابت بودن سایر عوامل، به متوسط میزان سرمایه‌گذاری انجام شده در ماه‌های کشاورزی، 180/0 واحد افزوده خواهد شد (قربانی، 2009). بنابراین افزایش در شرایط بهره‌وری میان‌الات کشاورزی در کشور، به‌طور متوسط در سال‌های 1990-2002 در حدود 22/13 درصد بوده است که ظاهراً علمی‌انهای حاصل آن استفاده ناکامی‌های میان‌الات است (امیرتیموری و خلیلیان، 2008). در این پژوهش فرض شده است که می‌توان با استفاده از میان‌الات، بهره‌وری آنها را افزایش داد.

تابع عملکرد گندم: تابع عملکرد گندم، نشان‌دهنده حجم تولید گندم در هکتار است که براساس عوامل میزان کود استفاده‌شده و حجم میان‌الات و حجم بارش سالانه و سابقه گردانش این عوامل، شبیه‌سازی شده است. با توجه به سابقه رفتار این عوامل، مشخص است که حجم بارش سالانه، تأثیر زیادی و فراوانی بر افزایش حجم تولید کندم نداشته و فقط به عنوان یک پارامتر محدودکننده تولید گندم در سال‌هایی که حجم بارش سالانه که متوسط بارش سالانه از نظر میان‌الات شده، می‌تواند به عنوان یک پارامتر محدودکننده تولید گندم در سال‌هایی که حجم بارش سالانه که متوسط بارش سالانه در دوره برخورد با 42 درصد ضایعات گندم بوده است و از مقایسه نمودارهای تولید گندم در حجم بارش سالانه مشخص می‌شود که هرگاه حجم بارش سالانه از 35 میلیاردر متکی بر افزایش این پارامتر محدودکننده تولید گندم نیز کاهش یافته است؛ بنابراین، در شبیه‌سازی تابع تولید گندم، بارش به عنوان پارامتری محدودکننده ظاهر شده است.

شکل 4- مدل حالت-جریان شبیه‌سازی‌شده مسئله
5-2-4 تولید و ذخیره گندم: در این نمودار، تولید کلی از مجموع تولید گندم، واردات، تولید حاصل از کاهش ضایعات و تولید حاصل از افزایش بهرهوری به دست می‌آید و مصرف گندم، حاصل جمع مصرف داخلی و صادرات است. ذخیره گندم از اختلاف تولید و مصرف گندم حاصل می‌شود که نشان‌دهنده حجم ذخیره گندم در انتهای سال است. تولید گندم، حاصل ضرب میانگین کشت و نابع عمده‌کردن گندم از اضافه تاثیر کیفیت خاک بر حجم تولید گندم است. رابطه کیفیت خاک و تولید گندم با استفاده از مقاله ثروتی و همکاران (2014) برآورد شده است. در این مدل، حجم ذخیره گندم با سطح ذخیره اطمنیان مقایسه می‌شود و در صورتی که کمتر از سطح ذخیره اطمنیان باشد، برای واردات گندم اقدام می‌شود. میزان ذخیره اطمنیان برای با مصرف کیک دوره سپاس‌مده در کشور است. همچنین صادرات در دوره انجام می‌شد که حجم ذخیره گندم از سطح ذخیره گندم مطلوب بیشتر باشد.

3-2 شیب‌سازی مدل یوتوا

برای شیب‌سازی مدل، ابتدا تابع عملکرد گندم با استفاده از داده‌های ثروتی و همکاران، کود و بارش تخمین زده شد. با توجه به شکل شماره ۴ مشخص می‌شود که متغیرهای کود و تکنولوژی، همچنین زیادی به تولید گندم دارند و لیا متغیر بارش، همچنین زیادی به تولید گندم تاثیر دارد و حجم بارش سالانه به عنوان یک محدودکننده تولید گندم عمل کرده است؛ ولی با افزایش سایر متغیرها، تولید گندم نیز افزایش یافته است؛ بنابراین برای تخمین تابع عملکرد گندم با استفاده از نرم‌افزار رگرسیون ساده و تحلیل آماری (SPSS) گردش می‌گردد. معنی‌داری حاصل از افزایش بارش و کود به عنوان یک متغیر کنترل استفاده شد. به ترتیب می‌توان اگر میزان افزایش بارش از آستانه مشخصی کمتر شود که تولید گندم کاهش خواهد داشت و حتی بین متغیرهای کود و تکنولوژی اطمینان می‌شود که این مقدار به تابع عملکرد گندم تاثیر نمی‌گذارد.

4-2 اعتبارسنجی مدل یوتوا

برای این که مدل کیفیت مناسبی شود به عنوان اولیه مؤثر استفاده شود، باید از آزمون‌های متعددی برای درستی طراحی شده در این زمینه، اعتبارسنجی شود. این آزمون‌ها به سه دسته کلی آزمون‌های متعدد چنین شکلی که با استفاده از استانداردهای ارائه شده است. بعد از محاسبه باعث عملکرد تولید گندم، با توجه به سطح زیر کشت، حجم تولید گندم سالانه محاسبه می‌شود. نتایج این تحلیل نشان‌دهنده تابع عملکرد گندم از این آزمون کنترل انجام می‌شود و نشان‌دهنده حاصل از افزایش مصرف گندم سالانه است. خواص حاصل از این آزمون را در این آزمون را می‌توان به دست آورد.

4-2-1 آزمون بازتولید رفتار: در این آزمون، رفتار مدل با رفتار لایه‌ای واقعی مقایسه می‌شود. این آزمون برای اعتبارسنجی رفتار مدل به کار می‌روند. نمودار داده‌های واقعی و شیب‌سازی شده تولید گندم در شکل شماره ۵ مشاهده می‌شود. رفتار مقایسه داده‌های حاصل از شیب‌سازی داده‌های واقعی، ابتدا با استفاده از آزمون آماری مقایسه‌ی آریا و ویلیامز، برای واریانس دو جامعه و انتخاب می‌شود. نتایج حاصل از این آزمون نشان داد در حالت اطمینان یک درصد، واریانس و واریانس ها دو جامعه با یکدیگر مقایسه شد. نتایج حاصل از این آزمون نشان داد در سطح اطمینان یک درصد، واریانس و واریانس ها دو جامعه با یکدیگر با است. در آزمون بازتولید رفتار، استفاده از روش‌های...

پویاییشناسی عوامل مؤثر بر پایداری سیستم تولید گندم/ علی‌رضا امیری و همکاران

127
آماری، همانند درصد خطای MSE درصد خطای مجذورات 17 خطای SE استاندارد است (حاجی غلامی سریزدی و مشایخی، 2017). استرمن درصد خطای مجذورات RMSPE را روش‌های معامل و ساده برای ارزیابی رفتار مدل می‌داند.

شکل ۵- نمودار داده‌های واقعی و شبیه‌سازی شده تولید گندم

مقدار RMSPE شاخص که نشان‌دهنده میزان احراز مقدار شبیه‌سازی شده از مقدار واقعی است، به صورت فرمول شماره ۱ محاسبه می‌شود (استرمن، 1984):

\[
RMSPE = \sqrt{n^{-1} \sum_{i=1}^{n} (S_i - A_i)^2 / A_i}
\] \hspace{1cm} (۱)

که در این فرمول، \(S_i \) مقدار شبیه‌سازی شده در زمان \(i \) و \(A_i \) مقدار واقعی در زمان \(i \) و \(n \) تعداد دوره است. همچنین ضرایب نابرابری بیل، که \(U'' \) و \(U' \) نام دارند و روابط آنها در فرمول‌های شماره ۲-۴ مشخص شده است (استرمن، 1984). برای پیش‌بینی منابع ایجاد خطا در مدل استفاده شد.

\[
U'' = \frac{n(S - \bar{A})'}{\sum_{i}(S_i - A_i)'}
\]

\[
U' = \frac{n(S_s - S_A)'}{\sum_{i}(S_i - A_i)'}
\]

(۲) (۳)
پویایی شناسی عوامل مؤثر بر پایداری سیستم تولید گندم/ علیرضا امیری و همکاران

\[U^* = \frac{\sum (S_i - A_i)^2}{S_\text{حسرت}} \]\n
محاسبه شده‌است که نشان دهنده میزان برای انجام اجرای استاندارد مقادیر شیب‌سازی شده است. میانگین مقادیر واقعی و میانگین مقادیر شبیه‌سازی شده باشد. مطابق با است. میانگین مقادیر واقعی و میانگین مقادیر شبیه‌سازی شده است. ضرب همبستگی بین مقادیر واقعی و شبیه‌سازی شده است.

\[R^2 = \frac{\sum (S_i - A_i)^2}{\sum (S_i - \bar{S})^2} \]

محاسبه شده‌اند در جدول شماره 2 مشاهده می‌شود. مقایسه شاخص‌ها نشان می‌دهد مدل، اعتبار خوبی دارد.

<table>
<thead>
<tr>
<th>U^*</th>
<th>U^+</th>
<th>U^-</th>
<th>R^2</th>
<th>R</th>
<th>RMSPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.998</td>
<td>1.5</td>
<td>0.51</td>
<td>0.96</td>
<td>0.95</td>
<td>0.112</td>
</tr>
</tbody>
</table>

آزمون شرایط حدی: در این آزمون مشخص می‌شود که آیا تمامی معادلات مدل در صورت قرار گرفتن در معرض مقادیر حداکثر و امکان‌پذیر، باز می‌شود. این آزمون در سوک، سال 1388 (سوکسل، 2008) در انجام‌شده. مقایسه‌ای از رفتار مدل در شکل شماره 2 مشاهده می‌شود. در این آزمون، سطح زیر کشت برای برآورد فرآیند با صفر قرار داده شد. همان‌گونه که مشاهده می‌شود، به‌عنوان نمود سطح زیر کشت، حجم تولید کندم، صفر است.

آزمون سازگاری ابعادی: این آزمون، بی‌کی یا از آزمون‌های ساختار مدل است که مشخص می‌کند آیا ابعاد متغیرها در هر دو سمت معادله، در حال موارد قرار دارد (سوکسل، 2008). برای انجام‌دادن آن مورد،
 Contents

۱۶ مدیریت تولید و عملیات، دوره ۱۱، شماره ۲، پیوست ۲۱، تابستان ۱۳۹۹

علاوه بر استفاده از امکانات موجود در نرم‌افزار و نسیم، به‌صورت دستی نیز ابعاد در دو طرف معادلات کنترل و بازیابی می‌شود.

آزمون کتایی مرز: این آزمون نیز یکی از آزمون‌های بازاریابی است که برای آزمایش موثریت فرضیات و تأثیرات باین‌جویی در این سیستم مطرح شده است. (سومیلی، ۲۰۰۸)

قطعات انجام شده درباره متفکرات مؤثر در مدل و رفتار آنها، کتایی مرز مدل را نشان می‌دهد.

۴-۵ آزمون تایید ساختار: آزمون تایید ساختار، به‌طور تجربی به معنای مقایسه شکل معادلات مدل با روابط موجود در سیستم‌های داده است. روایتی که در معادلات مدل بر کار رفته است، با دانش‌اتنی‌ای توسعه‌یافته در این سیستم مطابقت داشته باشد.

۴-۶ تحلیل‌حساسیت

به‌منظور تاثیر وابستگی شدید کشاورزی به آب و بارش سالیانه، بدست آمده در سالهای پیشین، نمونه‌گیری از یک نمونه از فضای زیر کشت در شامل شده‌است. این نمونه شامل ۱۱۰۰ واحد است که در سالهای ۱۳۹۰ و ۱۳۹۱ با علت استفاده از کودهای شیمیایی موجب افت و کاهش کیفیت خاک و به خطر افتادن زیست محیطی، و سپس باید در استفاده از این کودها باعث کاهش کیفیت خاک و به‌خشن بررسی باید باشد. این نمونه‌هایی در برخی از اینها مورد استفاده قرار گرفته‌اند.

۵-۱ تحلیل حساسیت

به‌منظور بررسی تأثیر استفاده از تکنولوژی و کیفیت خاک بر روی معادلات مدل، در سه‌گروه مختلفی به‌منظور تحلیل حساسیت استفاده گردید.

۵-۲ سناریو زیادی: بعد از اعتبار سنجی مدل، می‌توان از آن برای تدوین انواع سناریوهای منظر برای آینده استفاده کرد. افزایش

۶-۱ سناریوسازی

بعد از اعتبار سنجی مدل، می‌توان از آن برای تدوین انواع سناریوهای منظر برای آینده استفاده کرد. افزایش
حاشیه از مدل در صورتی تجزیه و تحلیل می‌شد که سطح تکنولوژی پنج درصد و ده‌درصد از مقدار کنونی، بیشتر یا کمتر شود.

در ستاره‌ی دوم، تأثیر پنج درصدی کاهش استفاده از کود شیمیایی و افزایش ده‌درصدی استفاده از کودهای ارگانیک بر کیفیت خاک و درنفت، بر تولید گندم بررسی می‌شود. در این سناریو افزایش سطح تکنولوژی به موجب کاهش سطح ماشین‌آلات و به‌طور کلی، افزایش حجم تولید گندم به‌طور مستقیم موجب کاهش سطح تولید گندم می‌شود. به‌طور کلی، محققان است که حجم تولید سالانه نسبت به سطح ماشین‌آلات، حساسیت زیادی دارد. بنابراین برای رسیدن به حداکثری و تولید پایدار با پایداری باید آموزش استفاده بهینه از ماشین‌آلات کشاورزی و نگهداری و تعویضات آنها به‌طور کامل بر اساس تعیینات، نشان‌دهنده تأثیر بارش بر حجم تولید است. به‌طور کلی، در صورتی که درینفت کاهش یا افزایش سطح ماشین‌آلات، نوسان‌های رابطه بین کاهش درینفت با پایدار کشاورزی و به‌طور کلی، افزایش سایر نهاده‌های تولید، از کاهش سطح تکنولوژی به افزایش حجم تولید کمکی نخواهد کرد.
سناریو افزایش کیفیت خاک: برای افزایش میزان کیفیت خاک، حجم کود ارگانیک به میزان 10 درصد افزایش یافته، حجم کود معدنی را نیز درصد کاهش می‌دهد. همان‌گونه که در شکل شماره 10 مشاهده می‌شود، به علت افزایش استفاده از کودهای ارگانیک و کاهش استفاده از کودهای شیمیایی، کیفیت خاک افزایش می‌یابد؛ ولی کاهش استفاده از کودهای شیمیایی، اندکی موجب کاهش تولید کندم شده است. مشاهدات قربانی و همکاران نیز مؤید این نتیجه است. قربانی و همکاران ثابت کردند در صورت حذف نهاده‌های شیمیایی از جمله کودهای شیمیایی، کیفیت خاک افزایش می‌یابد.

سناریوهای ترکیبی: چهار سناریوی ترکیبی در جدول شماره 11 مشاهده می‌شود. به نظر می‌رسد در صورت استفاده از ماده‌های آلاینده و تجهیزات کشاورزی، کاهش بارش باران تا حدود زیادی جریان می‌شود. زیرا به شرطی که میزان بارش کمتر از میانگین بارش سالانه نباشد، در شکل شماره 11، رفتار مدل بارش سناریوهای ترکیبی مشاهده می‌شود. در تمام سناریوهای ترکیبی که در این مطالعه به مبنای کود معدنی، پنج درصد کاهش و کود ارگانیک ده درصد افزایش داشته است که همان‌گونه که در سناریو قبل مشخص شد، موجب افزایش کیفیت خاک شده است. نمودارهای شماره 10 و 11 نشان‌دهنده ساختارهای سناریوی ترکیبی در جدول شماره 11 مشاهده می‌شود. به نظر می‌رسد در صورت استفاده از ماده‌های آلاینده و تجهیزات کشاورزی، کاهش بارش باران تا حدود زیادی جریان می‌شود. زیرا به شرطی که میزان بارش کمتر از میانگین بارش سالانه نباشد، در شکل شماره 11، رفتار مدل بارش سناریوهای ترکیبی مشاهده می‌شود. در تمام سناریوهای ترکیبی که در این مطالعه به مبنای کود معدنی، پنج درصد کاهش و کود ارگانیک ده درصد افزایش داشته است که همان‌گونه که در سناریو قبل مشخص شد، موجب افزایش کیفیت خاک شده است. نمودارهای شماره 10 و 11 نشان‌دهنده
پویایی شناسی عوامل مؤثر بر پایداری سیستم تولید گندم/ علیرضا امیری و همکاران

ترکیبات ۱ و ۲ است که در افزایش پنج درصدی سطح تکنولوژی مشترک کند و نمودارهای شماره ۴ و ۵ نشان دهند. ترکیبات ۳ و ۴ هستند که کاهش پنج درصدی سطح تکنولوژی را نشان می‌دهند. انجه موجب تجاری آنها از یکدیگر شده است. نوسان پانزده درصدی میزان بارش این است در مقابل همه است. باعث افت تولید گندم شده است. این رفتار نشان می‌دهد نوسان سطح تکنولوژی، باعث نوسان آشکار در روند تولید گندم می‌شود. بنابراین، توجه به تکنولوژی کشاورزی و استفاده درست و کارآمد از آن، باعث افزایش سطح تولید گندم می‌شود. اما آنچه در این سناریو مهم است، رفتار نوسان بارشی میزان بارش باعث نوسان شماره ۵ است که کتای بیشتر درصدی سطح تکنولوژی و پانزده درصدی میزان بارش را نشان می‌دهد. نسبت به نمودار شماره ۱، که نمایش دهنده افزایش این دو عامل است، شکستگی بیشتری دارد و نمودار شماره ۱ نسبت به شماره ۵ هموارتر است. در توریج این رفتار، گفتگوی است در نمودار شماره ۵ وقتی میزان بارش از آستانه حدی کمتر شده است، باعث پرتیاب‌نگاری شکستگی در نمودار و کاهش تولید گندم شده است. ولی در نمودار شماره ۱، میزان بارش افزایش یافته است. بنابراین از شکستگی‌های موجود در نمودار اثری نیست و نمودار تقریباً هموارتر شده است. با توجه به اینکه نمی‌توان برای افزایش کلیه حجم بارشی سالانه بهترین راه، باید با طرح‌های آبی‌زردهای و مهار سیل‌های سطحی که در زمستان و بهار خسارت‌های هنگفتی به بار می‌آورد و برنامه‌ریزی برای تأمین بیشتر محیط آب در زمستان‌ها از این آب‌ها، شرایط رشد تولید گندم بر اثر افزایش میزان بارش را فراهم کرده و به صورتی از کاهش میزان تولید در سال‌های کم‌بارش جلوگیری کرده. بنابراین، نیاز به مطالعه بیشتر و سرمایه‌گذاری برای استفاده از بارش‌های سالانه، کاملاً محسوس است.

جدول ۳- تأثیر سناریوهای تکریکی بر تولید گندم

<table>
<thead>
<tr>
<th>تکریک ۱</th>
<th>تکریک ۲</th>
<th>تکریک ۳</th>
<th>تکریک ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>کود معدنی</td>
<td>-۵/۰%</td>
<td>-۵/۰%</td>
<td>-۵/۰%</td>
</tr>
<tr>
<td>کود بیولوژیک</td>
<td>+۱۰/۰%</td>
<td>+۱۰/۰%</td>
<td>+۱۰/۰%</td>
</tr>
<tr>
<td>بارش</td>
<td>-۱۵/۰%</td>
<td>+۱۵/۰%</td>
<td>+۵/۰%</td>
</tr>
<tr>
<td>تکنولوژی</td>
<td>+۵/۰%</td>
<td>+۵/۰%</td>
<td>+۵/۰%</td>
</tr>
</tbody>
</table>

شکل ۱۰- تأثیر سناریوهای تکریکی بر تولید و ذخیره گندم
بحث و بررسی ابعاد پایداری
برای بررسی ابعاد پایداری، باید به‌طور کلی آثار اقتصادی، اجتماعی و محیط‌پسندی تولید را بررسی کنیم.

1- بعد اقتصادی: شاخص کیفیت خاک یکی از شاخص‌های مهم در تعیین اطمینان‌آمیزی در بخش تولید را می‌تواند باعث افزایش حجم تولید و رسیدن به خودکفایی نشود. در این زمینه، پایداری اجتماعی را افزایش می‌دهد. یکی از اهداف دولت جمهوری اسلامی ایران در زمینه غذا، خودکفایی را تأمین می‌نماید.

2- بعد اجتماعی: شاخص کیفیت خاک یکی از شاخص‌های مهم در تعیین اطمینان‌آمیزی در بخش تولید را می‌تواند باعث افزایش حجم تولید و رسیدن به خودکفایی نشود. در این زمینه، پایداری اجتماعی را افزایش می‌دهد. یکی از اهداف دولت جمهوری اسلامی ایران در زمینه غذا، خودکفایی را تأمین می‌نماید.

3- بعد محیطی: برای بررسی پایداری از کناره‌گیری از کودهای کم‌کار و استفاده از کودهای مناسب باید توجه داشت.

4- بعد ارزشمند: برای کاهش خسارت، ضرر به جامعه را کاهش دهید.

5- بعد تولیدی: برای کاهش خسارت، ضرر به جامعه را کاهش دهید.
لزوم وجود امنیت غذایی در کشور، بر رسیدن به این هدف توصیه و تأکید می‌شود. شاخص‌های تولید و خودکفا باید به شکل شماره 12 مشاهده شوند و به‌منظور تحقق امنیت غذایی در کشور، باید به‌منظور تحقیم نمودار جریان و فرملوردکن مدل، مسئله شبیه‌سازی شد و بعد از اعتبارسنجی سانسروپوهی مختصی برای
پایداری سیستم تولید گندم پیشنهاد و بحث و بررسی شد. ستاری‌های تغییر سطح ماهین آلات، کاهش مصرف کودهای شیمیایی و افزایش مصرف کودهای ارگانیک و نوسان در بارش باران، هر کدام ایندا به‌طور جداگانه و سپس به صورت ترکیبی شیب‌سازی شد. کاهش استفاده از کودهای شیمیایی و افزایش استفاده از کودهای ارگانیک به‌طور جهشانگر در کاربری، به‌نظر برخی از کارشناسان در کوتاه‌مدت، تولید را کاهش می‌دهد ولی در بلندمدت با افزایش کیفیت خاک، سبب پایداری کشت و تولید می‌شود. با توجه به حساسیت زیاد تولید گندم به‌بارش باران و تغییراتی کشاورزی، سرمایه‌گذاری و برنامه‌ریزی برای استفاده بیشتر و بهتر از روان‌آبی سطحی و سیلابی و طرح‌های آب‌مانی‌داری و طرح‌های نوسان ناگاهان ماهین آلات کشاورزی و آموزش استفاده بهینه و کارآمد از آن به جامعه کشاورزی برعی

پایداری سیستم تولید گندم ضروری است.

پژوهش‌های گوناگون و وسیعی در حوزه کشاورزی و کشت و تولید گندم انجام شده است ولی نیاز به پژوهش‌های بیشتر در این حوزه کامل‌تر محوس بود. برخی از داده‌هایی که در پژوهش‌های انجام‌شده در مناطق مختلف ایران گردآوری شده، به‌عنوان مثال، فرمول محاسبه کیفیت خاک از پژوهش‌های انجام‌شده در منطقه خاک‌های شمالی و جنوبی استان چهارمحال و بختیاری (زهی 2016) برای کسب نتایج بهتر باید برنامه‌ریزی بهتری در زمینه‌های مختلف از شامل کمک به شناخت بیشتری از واقعیت موجود و برنامه‌ریزی بهتری برای تولید گندم می‌شود.

عوامل متعددی وجود دارد که به داشتن، داشتن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنامه‌ریزی انواع محیط‌های آبیاری، مدیریت، دی‌گری از افزایشات در دانستن، دانستن و برنам...

https://doi.org/https://doi.org/10.1016/j.jclepro.2017.11.187

Wills, B. (2016). *Purposely Profitable: Embedding Sustainability Into the DNA of Food Processing*
and Other Businesses. Chichester: John Wiley and Sons.

1. Abraham Maslow
2. Brundtland
3. American Public Health Association
4. Sustainable Food System
5. No-Till Farming
6. System Dynamics Methodology
7. Verification of Parameters
8. Validation of System Dynamics Model
9. indexmundi
10. Minimum Data Set (MDS)
11. Sand
12. Silt
13. Percent of Water Stable Aggregates (WSA)
14. Root-Mean-Square Percent Error (RMSPE)